Collaboratively Searching the Web — An I nitial Study

Agustin Schapira
Center for Intelligent Information Retrieval
Computer Science Department
University of Massachusetts, Amherst
Amherst, MA 01003 USA
schapira@cs.umass.edu

Abstract: We investigated the hypothesis that precision in web search engines can be
improved by using relevance information provided by a large number of different users.
We tested the hypothesis with a search engine that monitored which documents were
selected among the results for a query and then used that information to re-rank the
results when other users submitted the same query. The engine ran on the WWW and
received nearly 3,000 queriesin a period of two months. An analysis of the performance
history of the engine does not show any improvement in the quality of the results
returned for very frequent queries. Anecdotal evidence, however, suggests that for less
popular queries the engine did learn to re-rank documents in such a way that relevant
documents appear at the top of the results list. More experimentation and especially more
data are needed to prove or disprove the hypothesis.

I ntroduction

In arecent study [1], Lawrence and Giles estimate the size of the World Wide Web at
320,000,000 pages. Web search engines help users find information in this vast
repository. Although they provide an excellent start, Internet search engines have limited
success as information finders or filters. Users typicaly complain about @) the enormous
quantity of results returned for their query, and b) the fact that usually a large percentage
of the documents returned have no relevance to their query. For instance, a search for
“women’s world cup soccer” submitted to Infoseek while the tournament was being
played returned @) over 45 million documents, and b) a list in which the top 10 results
include —in this order— 2 relevant pointers to sites with up-to-date scores and statistics, 3
news documents that were published a year before the tournament started, 1 pointer to a
related tournament, 1 pointer to a current newspaper article, 3 completely irrelevant
results (including a page about the men’s world cup in France last year and a minor
soccer league in Texas), and no pointer to the officia site for the tournament at
http://wwc99.fifa.com/. Only four documentsin the top-10 list were relevant.

This paper investigates the efficacy of one particular method of improving result quality
in Internet search engines. The method consists in using implicit relevance feedback
gathered from the users to enhance the standard Information Retrieval techniques applied
in search engines. Concretely, the idea is to monitor which documents the users choose
from the results list; this implicit relevance feedback information is then fed into the
system and used to rank the results the next time that the same query is submitted —maybe
by a different user. Documents that are more frequently chosen get an increment in their

score (initially computed with standard IR techniques), and documents that are very
rarely picked see areduction in their score. The objective of this scoring mechanism isto
generate results of increasing quality over time: as more users select documents from the
results, the chosen ones will get higher scores and thus will move to the top of the list
while unpopular documents will see their score diminish and will thus migrate to the
bottom of the results list. In the women’s soccer example, we would expect this scoring
mechanism to help solve the second problem, the low quality of results in the top 10
documents. We would expect users to consistently select those documents that contain
up-to-date focused information about the World Cup and to consistently ignore the
irrelevant documents such as, for example, the one about the Texan league. After
receiving this kind of user feedback, the system should be able move the relevant
documents to the top of the list and give them a very high score, and to move down or
even eliminate the clearly irrelevant documents. This method, of course, will not help in
retrieving the one relevant document (the official website for the event), because that
document was never retrieved by the standard IR mechanism in the first place. Regarding
the other problem, the very large amount of documents retrieved, this method could only
help solve it indirectly by showing results of very high quality at the top of the list and
thus eiminating the need to look any further than the 10 or 20 documents that most
search engines show in the first results page.

The success of such a mechanism depends on the validity of several hypotheses and
assumptions. In the first place, for this system to succeed there should be an overlap in
the queries that a search engine receives; if every user types a different query, thereis not
much space for learning. Another hypothesis is that we can in general infer the relevance
or irrelevance of a document by monitoring whether the user decides to visit it (and click
on it) or not. Obvious questions arise: what if the user clicks on a document and then
returns immediately because it is not relevant? Maybe the time a user spends reading a
page is a better estimate. What if the user aready knows a particular document and then
does not select it? Does it mean that the document is not relevant? A third, and very
important hypothesis, is that al users (or at least the mgjority) have the same thing in
mind when they submit the same query. That might not be the case: the query “Miami
dolphins’ probably refers to two different things if it is submitted by a football fan or by
an expert in the field of animal communication working in Florida

To test these hypotheses, we first studied the patterns of queries submitted to a very
popular search engine to verify the validity of the first hypothesis, and then built a new
search engine that implements the described scoring mechanism. This paper describes the
implementation of the system and discusses the anecdotal results obtained with a
preliminary experiment.

Related work
Some of the ideas in this project are based on the progress in the area of recommender

systems, or collaborative filtering. Resnik and Varian [2] define recommender systems as
computer systems that receive recommendations as inputs and then aggregate those

inputs and direct the recommendations to appropriate recipients. An example of this type
of system is MovieLens, a web-based recommender system that asks users how they
liked alist of movies and then computes a measure of similarity in tastes among different
users. With those movie ratings and the similarity measures, MovieLens can recommend
to each user new movies that other users with similar interests have enjoyed. In an
environment like this, users make public their rankings and opinions and thus collaborate
indirectly with other users, hence the name “collaborative filtering”.

Recommender systems need very large databases of rankings/tastes to be able to compute
similarity metrics among users. A World Wide Web search engine is in a sense an ideal
platform for a recommender system, since data abounds in those environments. A popular
search engine like Excite receives queries in the order of 1,000,000 a day. With such a
large number of visits there is a big potential for using information provided by one user
to improve the quality of another user’ s interaction with the search engine.

Recommender systems are known to perform well with recommendation items for which
they have received many rankings, and poorly otherwise. This implies that a large
overlap in the queries is necessary in order to enhance a search engine's result with
collaborative filtering techniques. In an unpublished study, we have investigated a log of
one million queries submitted to Excite on a single day. Our results show a very large
overlap in the queries. The queries follow a very skewed distribution, with a few queries
appearing many times and thus representing a large percentage of all the searches, and a
large number of queries that only appear once. In the particular day when the Excite log
was recorded, only 641 queries (0.1% of all the unique queries) account for more than
10% of all the queries received. These results are similar to the ones reported by Jansen
et. al.[3]. Taken together, those studies support the idea of using techniques borrowed
from recommender systems in the realm of Internet search engines.

The ideas presented in this paper aso borrow from existing techniques to improve the
quality of IR systems. One of those techniques is relevance feedback [4], a method that
consists in presenting a set of results to the user and asking him to judge their relevance
in respect to his query. The system then uses that relevance feedback to add and remove
terms to the original query; terms to add are taken from documents judged relevant, and
terms to remove are taken from irrelevant documents. The improved query is re-run and
the new results presented to the user, who can provide even more relevance feedback; the
process loops until the user feels satisfied with the quality of the results. The relevance
feedback mechanism has been shown to produce results of increasing quality [5]. It has
been widely used in traditional (non web-based) IR systems, where users have a precise
information need and are willing to spend time with the system to improve the query in
order to get high quality results.

In Web-based environments, however, users are not necessarily willing to spend time
refining their searches. In a study of the usage of Internet search engines, Jansen et al. [3]
show that a very small percentage of people (less than 5%) used the relevance feedback
mechanism provided by Excite, even though it generates better results. Their study does
not investigate the causes of such low usage of the relevance mechanism. However, they

do report other behaviors among Excite users that, taken together, describe a generalized
attitude among the users of search engines. For instance, the mgjority of the queries that
Excite received had only 2 or 3 terms, very short compared to the length of queriesin
more traditional IR systems (some Internet search engines even perform poorly with long
queries, effectively discouraging lengthy queries). In addition, avery small percentage of
the users scrolled to see returned documents beyond the first page of results, and a very
small number of times did individual users refine their original queries if they could not
find what they were looking for in the first iteration. In other words, the study by Jansen
et a. shows (without speculating about causes) that users tend to interact very little with
Internet search engines, at least in comparison to what is typical in more traditional IR
systems.

The tendency for users to have little interaction with Web search engines encourages the
use of indirect measures to implement relevance feedback mechanisms in those engines.
The challenge is to find indicators that, on the one hand, do not require the users
interaction and that, on the other hand, provide good clues as to which documents are
relevant and which are not. The number of clicks that a document receives is, in some
sense, an indirect indicator of its relevance. If a user chooses a particular document from
alist of possible relevant pages, then it seems natural to increase one’'s expectation that
the document is relevant to the user’s query. A better indicator could be the time that a
user spends reading a document, but it is more difficult to implement and implies alarger
network overhead. It has also been suggested by Lieberman [6] that a page whose links
are followed by the user is likely to contain relevant information. Finally, Lieberman
claims that knowing that a user has bookmarked a page is a very good indicator that the
page is very important.

It is important to note here that the fact that relevance information has to be gathered
indirectly makes the task of building a collaborative search engine much harder than that
of building a traditional recommender system. Systems such as MovielLens receive
opinions directly from the users and have repeated interactions with each user, whereas in
a collaborative Internet search engine the interaction is not very frequent and the users
opinions have to be gathered from indirect indicators. Furthermore, ambiguity in an
Internet search engine is an issue not present in a recommender system: there is no
ambiguity about what movie the title “Casablanca’ refers to, while it is less clear what
“Casablanca’ means as auser query in a search engine.

This paper is adso an attempt to analyze the effectiveness of ideas that have already been
implemented in a commercial product, DirectHit [8]. DirectHit is an add-on to Internet
search engines that measures document popularity in the context of individua queries
that the engines receive. DirectHit monitored document selections from results lists for
almost a year, and then started to use that information to compute the score of documents
for previously-seen queries. DirectHit has not made available any information about their
method or their evaluation of the engine, so one can only speculate about the specific
algorithms they use and their effectiveness.

M ethodology
Hypotheses

The success of a recommender search engine system that gathers relevance information
indirectly by monitoring document clickrate and then uses that information to generate
higher-quality results for al users who type the same query depends heavily on the
validity of several hypothesis:

1. Thereissome overlap in the queries that the search engine will receive.

2. Therelevance or irrelevance of a document can be inferred with acceptable accuracy
by monitoring whether the user decides to visit it (and clicks on it) or not.

3. Thereis a considerable overlap in the subset of documents that all users (or at least
the majority) pick from alist of results for agiven query. That is, amost all the users
who type the same query will find the same subset of documents rel evant.

The first hypothesis has to be true for any recommender system to be successful. We
have verified this hypothesis in the case of Internet search engines by analyzing alog of a
million queries submitted to Excite on a single day. Data on that log led us to the
conclusion that the queries follow a very skewed distribution: a small group of queries
are repeated a very large number of times and thus account for a large percentage of the
total number of queries, while avery large number of queries are only seen once or twice
in aday. We also continued the Jansen et a. study [3] and investigated the distribution of
the queries according to topics. We trained a neural network to group queries according
to the similarities of the documents that they retrieved, and we found that a very large
percentage of the Excite queries fall into two or three popular subjects (pornography,
computer-related information, intellectual subjects such as universities and museums,
etc.) while anumber of categories receive very few queries. These results suggest that the
use of a recommender system could noticeably improve the quality of the results for
queries that are submitted by several people, while no improvement should appear for the
gueries that are submitted only once, dueto the lack of datapoints to learn from.

The second hypothesis deals with the acquisition of relevance judgements by indirect
means (indirect in the sense that the users do not provide that information explicitly). In
this study, we have not tried to validate the hypothesis that document selection is a good
indicator of relevance, but instead have taken it as an assumption for the rest of the
system. There are severa situations in which this assumption proves wrong; examples
include cases where users select a document by mistake (they meant to select another
one), cases where users select a document and realize that it is non-relevant as soon as the
page is loaded, cases where users do not select a document because its title and
description leads them to believe that it is not relevant, cases where users do not select a
relevant document because they have aready seen it, etc. In al these cases, monitoring
document selection does not lead, by itself, to an accurate measure of document
relevance. More advanced measures might provide better estimates, such as monitoring
the time a user spends reading a document or detecting how many links a user follows

from a page. However, they are all more expensive to implement. We chose to monitor
document selections because it might be a good enough indicator and it is much easier to
implement than other measures. It is important to note, however, that the results in this
study depend very heavily on this assumption.

The third hypothesis is that, given a large number of users that run the same query, the
vast majority of them will tend to choose the same documents. We tested this hypothesis
by building a search engine named Pluribus and making it available on the World Wide
Web. The engine retrieves the results for queriesit has never seen before by sending them
to another Internet search engine, Metacrawler. It then returns the results to the user and
monitors which documents she selects. When someone else types the same query the
search engine combines the score assigned by Metacrawler to each document with the
score derived from indirect relevance information, and then re-ranks the documents
according to their new score. Documents that are more frequently chosen get an
increment in their score computed by Metacrawler, and documents that are very rarely
picked see areduction in their score.

The following section describes Pluribus in more detail.
A brief description of Pluribus

Pluribus consists of a database that contains information about individual queries that
have been submitted to the engine and a scoring mechanism that makes use of that
information. Information about each query includes the list of documents that have been
retrieved with standard IR techniques, their score, which of those documents have been
selected in the context of the query, how many times, and how many times it should have
been selected and was not. That is, the database contains a list of entries with the
following information:

1. Query: Thetext of the query

2. Document: Information about a particular document that has been retrieved for the
query

3. Score: The score of the document as computed with standard IR techniques (without
the re-ranking mechanism)

4. Selections: The number of times that the document was selected by users in the
context of the query

5. Expected Selections: The number of times that the document was expected to be
selected by users but was not (also in the context of the query)

The database is initially empty. Pluribus does not attempt to index the World Wide Web,
nor does it try to directly use Information Retrieval techniques to retrieve documents.
Instead, Pluribus waits for a user to type a previously unseen query and then submitsiit to
Metacrawler, a search engine that combines results from other engines (including
Altavista, Excite, Lycos and Yahoo!). In order to increase the overlap in the queries it

receives, Pluribus pre-processes the origina user queries by removing unnecessary
differences. It first removes stop words such as the, a, another, etc., that will be ignored
by Metacrawler anyway. It then re-orders the query terms in alphabetical order, another
thing that is usually done by standard search engines'. The effect of this pre-processing is
an increase in the overlap of queries in the database; it allows Pluribus to recognize that
gueries such as “ Agustin Schapira” and “ Schapira Agustin” refer to the same thing.

When Pluribus receives the list of pages that Metacrawler has retrieved for that query, it
inserts all those pages in the database and then presents the results to the user. Each
(query, document) pair has an associated score, as returned by Metacrawler;
Metacrawler’s scores go from zero to 1,000 points.

Once the results are submitted to the user, Pluribus monitors his’/her actions and modifies
its database accordingly. Every time the user selects a document from the results list,
Pluribus records that selection and redirects the user’s browser to the corresponding
URL. For each selection, Pluribus increases the document’ s selection counter.

Pluribus acknowledges the fact that highly ranked documents have a higher chance of
being selected than documents at the bottom of the list (because they have more
visihility). Consequently, Pluribus puts more demand on highly-ranked documents; every
time a document is selected, Pluribus goes through all the documents in the results list
other than the one that has been selected and increments a vaue that indicates the
expected number of times that this document should have been selected. The increment is
afunction of the ranking of the document: highly ranked documents get a high increment
whereas documents in the bottom of the list get a very small increment. In the current
implementation, Pluribus is set up so that it expects the top 25% pages in the list to be
selected 60% of the time. Every time a user selects a document Pluribus increments the
expected number of votes for top pages by (0.6 * the number of pages in the top group).
The next 50% are expected to be selected 30% of the times (and thus the counter for the
pages in the second group is incremented by 0.3 * the size of the group), and the pages at
the bottom of the list are expected to be selected 10% of the times (and the counter is
incremented 0.1 * the size of the last group). Note that, following this formula, the sum of
al increments in expected selections that the system registers when it receives a
document selection will always be equal to one. In other words, for each query the sum of
expected number of selections across all its pages is always equal to the actual number of
selections.

When Pluribus receives a query that is already in the database, it does not retrieve any
new documents from Metacrawler but instead uses information it has already gathered
and re-computes the score of each document.

The score of adocument is computed as the combination of three elements:

! Some engines, such as Infoseek, are sensitive to re-arrangements of the query terms. Pluribus ignores that
fact.

» The score assigned by Metacrawler. This score reflects the relevance of the page as
computed by Metacrawler.

» 100 points for each selection that the page has received in the context of the current
query.
* 100 points for each time that the page should have been selected.

Those three elements are combined in the scoring formula:

score= MC _score+100* Selections-100* Expected Selections

Note that if a page is selected more times than expected then the difference between
selections and expected selections is positive and thus the document gets a higher score
than the one assigned by Metacrawler. Conversdly, if the document is selected less often
than expected, the difference is negative and its final score is less than the value assigned
by Metacrawler. This mechanism thus is responsible for the rerankings of the
documents; as their score changes with time, documents occupy different positions in the
list of results. Idedlly, relevant documents will go to the top of the list and irrelevant ones
will descend.

Also note that the value that is added to the counter of expected selections depends on the
ranking of the document in the results lists, which in turn varies over time. Consequently,
when a document is at the bottom of the list it gets a small penalty for not being sel ected.
The fact that someone selects that document even though it is a the bottom of thelist isa
good indication that the document is relevant, and it is thus moved up the list very
quickly. As more people select it and it approaches the top of the list, then the fact that
someone selects it is less significant, which is reflected in an increased penalty and thus
the speed of ascent slows.

Finally, it is important to point out that this scoring mechanism can become problematic
as the number of document selections increases. As the documents in the results list for a
query receive more and more selections, their original Metacrawler score will be
superseded by the other elements of the scoring formula, and the IR part of each
document’ s score will thus be ignored. Thisis not a desirable property, and a normalizing
scheme has to be introduced in the future to balance that. In this experiment, however, the
quantity of selections was never too large to become a problem (see Results section).

As has been described above, once Pluribus has cached the results for a query it aways
retrieves documents from its database. In order to avoid showing outdated information,
Pluribus refreshes its cache once a week. When it receives a query that is stored in the
database and whose contents are more than a week old, Pluribus submits it back to
Metacrawler and maybe retrieves new documents that were not returned by Metacrawler
the previous time. These new documents are inserted into the database, with their scores
equal to the value returned by Metacrawler and with no information about number of
selections or expected number of selections. One effect of this policy is that as time goes
by, the size of the results list for a particular query increases. For example, Pluribus could
receive 20 documents from Metacrawler the first time it submits the query. One week

later, Metacrawler might return two new documents that are inserted into Pluribus
database. A user that submits the query a week after the query was first received will get
aresultslist with 22 documents, instead of 20 as the first user got.

Pluribus [7] can be accessed at http://keilor.cs.umass.edu/pluribus. Since it is an Open

Source project, its code can be downloaded and modified for different experiments.

3 Pluribus - Search Results - Netscape
File Edit View Go Communicator Help

PLUR].BUS The search engine where your opinions count

The results below were retrieved from Metacrawler and inserted in our database on 1999/07/05. Refresh

This query has been executed 277 times. 241 votes have been made.

Page score (sum of scores of all results in page)
29264 points altegether, computed as
20451 Mefacrawler points +
24100 vote points - 34287 arpesfed wote paints
How should | read these results?

Showing documents 1 to 75 0f 75. Go to page 1 23473

Joioioiok MySQOL
3771 points http://www.tex. sel

TET + Iyfoseek: Designed by 1998-11-18 23:00 GMT
MO0 - 1116 WebCrawler: Some users of MySQL - There will be more and more and more. . Give some Feedhack Asking questionsfContacting us. Designed by Stotk Design studio 1999-03-27 18:00 GMT
FYahoo!: - freely available database software for Unix and Win32 Wi T,

Fkkdk Create and manage databaces with mySQL (Beck Web Servers &Des
3632 points hettp://wwy. veh-design. net/ servers/extensions/mysgl/

330+ Excite : MySQL MySQL is arelational database management system (rdbms) developed by T.o. 2 DataKonsult in Sweden. MySQL provides users with a powerful multi-user, multi-threaded SOL
4100242 (Structured Query Language) database solution that is fast, robust, and easy to use.

Ak Web Gadgets - HTML, PHP, Databases (MySQL), Messagze Boards, Forms, Questionair

1530 points http://canuc.baremetal . com/

T4+ AltaVista - Some of my web gadgets include, Messags boards, Fotms, Cohumns, Chat
1900 - 744
[[=B=| |Document: Dons

#stan| ¥ xwinz |[5% Pruribus - Search Res... | B Miciosoft Word - Collabora...| 3§ Microsolt Excel - riginelds | (3 tesis [suarm
Figure1: Pluribus

The following section analyzes the data obtained by monitoring the usage of Pluribus for
two months.

Experiment Results

Pluribus remained open for public use for two months (April and May 1999), during
which we recorded al the queries that were submitted, all the results that were presented,
and all the selections that were made. We then used data from those logs to verify the
hypothesis that repeated user selection is an indicator of document relevance.

In order to attract traffic, Pluribus was listed in web pages devoted to Internet search
engines, announced in newsgroups and mailing lists, linked from the sites of the

platforms on which it had been developed (mySQL and PHP), and promoted in genera
search engines.

Pre-processing
Pluribus received 2,767 queries and a total of 1,683 document selections. Of those 2,767

gueries 1,088 were unique, with each unique query submitted to Pluribus an average of
2.5 times.

Number of queries per day Number of users per day
300 40

200

=
S
3

A { - 10
L K. .

LA RATINY Al A
A BN "\\’ SR

Number of queries

o
USERS

Do %o % o, 9, % o 9, % o 9, % o, % %o % % % % % o 5, 9, % %
R B R R N AN

> % o Ry

Date DATE

Figure2: Pluribus usage

Of those 1,088 unigue queries, 617 were submitted to Pluribus only once. Pluribus cannot
improve the quality of the results for a query that it has processed only once, and we thus
removed those 617 queries from the dataset for our analysis. (In a strict sense, Pluribus
can start to learn from a single session, but there is no way to evaluate whether that
learning will be meaningful in other circumstances)

In the case of many queries, users did not select any documents from the results lists. If
there are no document selections then Pluribus cannot gather relevance feedback, and
thus the system behaves exactly as the source from which it retrieves its results
(Metacrawler in this case). We thus only kept in the dataset the 278 queries for which at
least one document selection had occurred.

We then removed from our consideration all those queries that had been submitted only
by a single person or for which selections had only been made by a single user. We
identified users by the IP address of their machine or by the IP address of the proxy
through which they accessed Pluribus. After this pre-processing step, only 31 queries
remained for study.

We finally noticed that there were some queries that had been executed several times, by
different users, and for which several selections had been made, but for which the
selection ratio was very low. Thisimplies that many users had executed the query but that
the number of times that documents had been selected was comparatively very low. We
set an arbitrary limit for selection rate (0.2, meaning that a document was selected at |east
once for every five times that query had been submitted) and were left with 18 queries to

10

study. Those 18 queries sum up to 509 different sessions and 368 document selections (a
session consists of a query submitted by a user and al history of document selections

performed).

The following table shows the chosen queries and their statistics.

Query Submissions | # people that # of selections | # people that
submitted it made
selections

Sex 210 123 151 61
mysql 163 112 122 49
collaborative filtering 58 25 28 14
php 12 10 7 5
agustin schapira 11 6 6 3
php3 10 8 3 3
Pasantias 8 3 5 2
Iv3radio 5 2 4 2
mexicans sexy 5 3 4 3
"make your own cds" 4 2 4 2
dsp 4 3 3 2
Programming tutorial xlib 4 3 4 2
anderson pamela 3 3 4 3
empanada 3 3 7 2
emulator network 3 3 3 2
"sources of carbon dioxide" 2 2 8 2
Creatinina 2 2 3 2
e-machines 2 2 2 2
TOTAL 509 315 368 161

TABLE 1: Queriesin the dataset

As can be seen from the previous table only three queries were executed more than 20
times or received more than 20 document selections, while the majority of the queries
were only submitted two or three times. As a consequence, our data lend themselvesto an
anecdotal anaysis of the performance of the system, but not to any exploration of
statistical significance. In what follows we present an informal analysis of the data and
provide anecdotal evidences suggesting that the approach could be valid for a certain type
of queries.

Analysis

A first observation of the list of queries suggests the existence of two different groups.
On one hand, there are popular queries, with more than 50 submissions each (sex, mysql,
and collaborative filtering). On the other hand, the vast mgjority of the queries seem to be
rare, with an average of three submissions/query.

Our analysis suggests that the performance of our approach might depend heavily on the

popularity of the query to which it is applied. The data show that the system performs
poorly for popular queries and better for not-so-popular ones. A possible explanation of

11

this behavior is related to how the number of selections determines the overlap in the
documents that are selected by different users for the same query. If few people submit
one particular query and they select a small number of documents from the results list
(there were 1.17 selections per session in average), there is a high chance that they will
all select documents from the same subset of clearly relevant documents. As more and
more people submit the same query, however, there is a higher chance that some of them
a) are looking for a different thing than the rest or b) are interested in exploring and
selecting documents other than the clearly relevant ones. As different people explore
other possibilities in the results lists then the overlap in documents selected becomes
smaller, which in turn affects the performance of the system.

If this is the case, then a possible conclusion is that the system is trying to adapt too
rapidly for popular queries, in which case selections should be taken with more reserve.
In other words, the fact that a user selects a document for a rare query implies that the
document has a high probability of being relevant; on the other hand, since so many
people select documents for popular queries, then each selection should increase the
system’ s expectation that the document is relevant by a smaller number. If thisanalysisis
correct, then it could be possible to improve the performance of the system by adjusting
the rate at which it re-ranks documents for popular queries.

We will now illustrate these observations with concrete data from Pluribus.
Popular queries

The most popular query is sex, with 151 selectionsin 91 different sessions (an average of
1.7 selections registered every time the query was submitted). Figure 3 shows the average
ranking of the documents selected in each of the 91 sessions. This metric is computed by
grouping al the document selections into their corresponding session and then computing
their average ranking (rankings start from zero for the top document in the list). As was
explained before, a session consists of the submission of a query by some user and al the
documents that the user selects for that query in that submission; if the same user submits
the same query later, that is taken as a different session. This metric helps anayze the
performance of the system as time passes. If the scoring mechanism performs well we
expect to see a decreasing trend in the average ranking of the selected documents; that
behavior would be a consequence of good documents being selected and moving up in
the list (and thus their ranking going down) and unpopular documents being demoted in
thelist (and thus their ranking going up).

Figure 3 shows that the system does not behave satisfactorily for the popular query sex.
Instead of a decline in the average ranking of the documents selected, we observe a
random pattern with regular peaks as the session number increases. In fact, on the right
side of the graph we find an increase in the average ranking, a clear indication that the
approach is not working properly.

A look at the list of documents that Pluribus returned for the query sex shows a wide
range of topics. The titles and summaries of the documents retrieved were informative,

12

which implies that the users were making informed choices. However, it seems that
different users were looking for different things when they typed the query sex, and that
the wide variety of topics in the documents retrieved allowed each user to pick the
particular topics they were interested in. Thisresultsin alack of overlap in the documents
selected, and ultimately in a poor performance of Pluribus.

A careful analysis of Figure 3 shows how the average ranking of the documents selected
in each session depends heavily on the refresh periods of the system. As was explained
in the previous sections, Pluribus refreshes the contents of its cache when they are older
than a week. This refresh introduces new retrieved documents for each query, and as a
consequence the number of documents returned to the users in the results list grows as
time passes. The appearance of new documents (and thus the longer results lists) explain
the peaksin the graph: after each refresh there are more documents to choose from. Some
of the new documents are relevant but appear close to the bottom of the list, because they
have not had a chance to be selected in the past and thus the only score they have is the
one provided by Metacrawler (whereas the older documents have a Metacrawler score
plus extra points for the selections they have received). Since some of these new
documents at the bottom of the list are relevant, users tend to select them and thus the
average increases. An ANOVA anaysis of the groups of means within each refresh
period shows that the averages increase significantly every time the system refreshes its
cache.

Query: Sex

Avg. Rank of documents selected in each session
60 1

50§

403

efresh point

|
|

|

|

|

|

E |
303 |
E |

k

|

|

|

|

|

|

|

|

|

3 |
203 |
E |

|

A4l bl
o L UWAJW o ST TS WS VYL T

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 8-6 9-1

Ranking (O: top of the list)

Session #

Figure 3: Query sex

A similar behavior is observed for another popular query, mysgl (a database engine). The
sequence graph for that query shows oscillations in the average ranking of the documents
selected in each session. In addition, refresh points are followed by increments in that
average, as newer documents appear at the bottom of the results list.

13

Query: MYSQL

Avg. Rank of documents selected in each session

40 «
30 4

204 Refresh point

104

Al

VARRATER

Z,____________
-
-

Ranking (O: Top of the list)

LA

i
1 6 11 16 21 26 31

Session #

Figure4: Query mysql
This analysis suggests two things:

» If the queries are very popular such as sex, then different users tend to select different
sets of documents, and thus the system receives too much noise to be able to learn
anything, and

» Refreshing the cache introduces the problem of increasing the number of documents
that are shown to the users, increases the average ranking of selected documents
because it introduces new (possibly relevant) documents at the bottom of the list, and
makes comparisons more difficult.

The next query in popularity, collaborative filtering, received 28 selectionsin 16 session.
In this query we can observe one characteristic present in the two other popular queries:
increased averages after arefresh point.

This query, however, aso serves as the transition point between the two groups, the
frequent and the rare queries. Although the number of points is too small to make any
solid conclusions, in the graph it seems that the system is learning to recognize the
relevant documents and to take them to the top of the list. Within each portion of the
graph between refresh points there is a clear decreasing line for the average of the
documents selected. Thisimplies that users tend to select documents at the top of the list
as time goes by, until new (relevant) documents appear at the bottom of the list and the
system has to learn again.

14

Query: collaborative filtering

Avg. Rank of documents selected in each session

503 I I
] | |
401 | |
] | |
] | |
303 | |
] | |
| |
| |
| |
| |
| |
|

|
|
|
|
|
|
|
E |
20 ; lkefresh point
|
|

T

L

ES

ks

o

e 1

s 103 /\

2 3 !

£ 3 | ! |

€ 03 . L N 7/ L] .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Session #

Figure5: Query collaborative filtering

Lessfrequent queries

We had 15 queries in our dataset that were repeated often enough for the system to learn,
but not as frequently as sex or mysqgl. In the majority of the cases (9 cases), the system
was able to correctly identify relevant documents. In some cases (3) there was no overlap
in the documents selected by different users and thus the system was unable to learn. In
the rest of cases (3) the system did not improve its performance although there had been
an overlap in the documents selected. The following table summarizes these results and
the rest of the section examines each query in detail.

Result Queries

Correct learning php, Agustin Schapira, php3, Iv3 radio, mexicans sexy,
programming tutorial xlib, Pamela Anderson, empanadas, e-
machines

No overlap in selections | Make your own cds, emulator network, creatinina

No learning Pasantias, Dsp, “ sources of carbon dioxide”

TABLE 2: Rare queries and system performance

In the queries where the system was able to learn, a decrease in the average ranking of the
documents selected as time went by can be observed. It is important to emphasize the
each query contains too few datapoints to reach any sound conclusions.

An interesting case is the query php, the most popular in this group (12 submissions); as
Is the case with the queries in the other group, cache refreshments introduce new
documents and raise the average ranking of documents selected. Notice that Pluribus only
refreshes the cache for an old query when it is re-submitted; if severa weeks pass

15

between two submissions of the same query, then only one refresh is performed. This

explains why popular queries have many more refresh points than rare ones.

Ranking (0: top of the list)

Avg. Rank of documents selected in each session

Query: PHP

30

204

104

|
|
|
|
}Refresh point
|
|
|
|
|
|
|

Session #

Figure 6: Query php

The query Agustin Schapira demonstrates an improvement due to the re-ranking
mechanism?. The following is the sequence of selections registered:

Session # Doc. Selected At position Origina Position
1 40 4 4
1 626 2 2
1 627 3 3
1 637 15 15
2 40 1 4
3 162 0 0

QUERY:: Agustin Schapira

The first user that submitted the query selected document #40 in the first place. That
selection increased the document’ s score and moved it closer to the top of the list. When
the next user submitted the query, he/she found it relevant and selected it from position 1,
three points higher than its original position. In that sense, the system learned to identify
the relevant document.

2 The query with the author’s name was submitted by real users of Pluribus, not by the author in a
controlled experiment; those users were probably looking for more information about the author.

16

Query: Aqustin Schapira

Avg. Rank of documents selected in each session

Query: PHP3

Avg. Rank of documents selected in each session

Ranking (0: top of the list)

Ranking (0: top of the list)

2

3

2

Figures7 & 8: Queries Agustin Schapira and php3

A similar behavior can be observed for the PHP3 query. The third user selected the same
document than the first user chose; that document moved up four positions in the results

list.

Session # Doc. Selected At position Origina Position
1 5525 8 8

2 13255 I I

3 5525 4 8
QUERY: PHP3

The case of the query pasantias is very interesting and demonstrates one problem
introduced by the use of Metacrawler to retrieve documents. When it receives a query,
Metacrawler submits it to several search engines such as Altavista, Lycos and Excite and
waits for their response. In order to avoid exposing the user to very long delays,
Metacrawler times out if a search engine has not replied to the request. This generates
cases in which most of the engines time out (probably because the Metacrawler server’s
connection to the Internet is experiencing problems) and thus the quality of the resultsis
very poor. If the query isre-run at a later time and few or no engines time out, then the
list of documents returned by Metacrawler will contain a large proportion of new good
documents. Thisiswhat happened in the case of the pasantias query. The first timeit was
executed it returned very few good documents. When it expired and was refreshed a
week later most of the old documents moved to the bottom of the list, since the new
documents had a much higher score. This had a negative effect on Pluribus; the first user
that ran the query chose one of the documents that were retrieved, and Pluribus moved it
to the top of the list. When the query was refreshed, that document was moved to the 20"
position because its score was very low compared to the score of the new documents.
However, that document turned out to be relevant, and the next visitor selected it but this
time at the bottom of the list; the average ranking thus increased notably.

17

Session # Doc. Selected At position Origina Position
1 2943 2 2

2 14862 2 2

2 2950 24 9

2 2955 15 14

2 2943 20 3

QUERY:: pasantias

Pluribus behaved very well for the queries “Iv3 radio”, and “mexicans sexy” . In both
cases, the average ranking of selected documents decreased as the system identified the
relevant documents. The later query shows a very good behavior. According to the users
selections, document #4400 seems to be very relevant to the query: al the users selected

it. Pluribus detected that and moved it from position two to position zero.

Session # Doc. Selected At position Origina Position
1 4400 2 2

2 4400 0 2

2 4404 6 4

3 4400 0 2

QUERY: Mexicans sexy

Query: Iv3 radio Query: Mexicans Sexy
Avg. Rark of documents selected in each session Avg. Rark of documents selected in each session
Session # Session #

Figures9 & 10: Queries|v3radio and mexicans sexy

The query programming tutorial xlib is a case in which Pluribus moved a document up in
the list not because it had been selected, but because the documents above it were not
selected enough times. The following table shows how document 10797 was moved up
eight positions because the documents above it had not been selected. This turned out to
be a good move, because the second user selected it (at position 8 instead of 16).

18

Session # Doc. Selected At position Origina Position
1 10792 8 8

2 10789 5 5

2 10797 8 16

3 10786 2 1

QUERY:: programming tutorial xlib

Finally, the query e-machines also showed good results, although the number of casesis
only two. Here, Pluribus moved a document from number 3 to number O after one
selection; the next user also chose that document.

Session # Doc. Selected At position Origina Position
1 11348 3 3
2 11348 0 3

QUERY: e-machines

No learning was observed in the other queries, either because there was no overlap in the
documents selected or because there were not enough selections.

Conclusions and futurework

This report presents anecdotal evidence that the proposed approach might be useful to
improve the quality of the results returned by search engines in the case of queries of
moderate frequency. It also indicates that the approach, as it was implemented in
Pluribus, might not be valid in the case of very popular queries.

A plausible explanation of this difference is that in the case of popular queries the system
increases or decreases documents’ scores (and thus moves them) too rapidly. We have
speculated that a possible solution to this problem might be to make the size of the
changes in scores get smaller as the query becomes more popular. An experiment with
that modified system will allow to analyze this explanation in detail and might help
improve the performance of the system and make it valid for popular queries as well.

This preliminary experience has also been useful to delineate another future experiment
to prove or disprove the original hypothesis with statistical significance. In the first place,
it is clear from our experience that data has to be collected with a more popular search
engine in order to get a clear picture of the real searching behavior in search engines.
That picture is necessary to test the validity of our hypothesis. Thanks to its popularity,
DirectHit has been able to collect alarge amount of data about the searching behavior of
its users, but regretfully they do not make that information public.

In future experiments it will be important to control the effect of Metacrawler’s time-
outs, which make it an unstable engine. In some cases Metacrawler cannot retrieve
documents from some sources because the connection is down; submitting the query
sometime later, when the problem has been fixed, returns a completely different set of

19

documents, usually with higher quality (and thus score). Introducing in Pluribus
database a new set of documents with much higher scores than the original set has the
effect of erasing all the learning that the system has achieved in the past. In our
preliminary experiment we used Metacrawler because it provided results from a wide
selection of search engines; in more controlled experiments using a single stable engine
such as Altavistais recommended.

Also, it will be important to control for the effect of refreshes of the cache, new
documents introduce noise in the system. If ignoring new documents is not acceptable,
then at least the system should always show only the top n documents of the list, although
some documents that once appeared in the results list might disappear later. Keeping the
size of the results list constant will also make it easier to compare the performance of the
system as time goes by.

In this experience we have been able to identify a series of variables that can be used in
future experiments to test the hypothesis that document popularity is a good indicator of
relevance. If the hypothesis is true then we expect to find an improvement in the quality
of results as users submit the same queries and select the same documents. Increased
quality in this system means that relevant documents move to the top of the results list
while non-relevant documents descend to the bottom. In principle, increased quality can
be measured with the help of several variables:

» The average ranking of the documents selected in each session. For each particular
guery, we expect to see a decrease over time of the average ranking of the documents
selected. This should be generated by the fact that relevant documents (and thus the
ones users choose) tend to move higher on thelist.

» Theranking of the first document selected by a user that submits a query. If relevant
documents move to the top of the list as time goes by then users should tend to select
documents at the top of the list first and only then move to less relevant one if they
want more information.

* The number of documents that are selected from the top 5% of the list and the number
of documents that are clicked from the bottom 5%. This measure is related to the
previous and gives an idea of the precision of the documents at the top and the bottom
of thelist.

» The average ranking of the set of documents selected by users for each individual
query. If the hypothesis is true and the system is working properly then the average
ranking of the documents deemed relevant by the users should decrease.

If further experimentation supports these conclusions, then using the re-ranking
mechanism proposed here could lead to a significant improvement in the quality of real
Internet search engines even if it only works for not-so-popular queries. In those engines,
many queries are executed very often and represent a very large percentage of al the
gueries, and many are executed only once or twice. In the middle of these two extremes
there is a large number of queries that are less frequent than the most popular ones but

20

that yet are submitted by several different people. Our data suggest that the re-ranking
mechanism proposed here could automatically generate better results for that large set of
gueriesin the middle. For very popular queries, it might be more convenient to manually
create alist of relevant documents, or improve the system so that it scales well to alarge
number of document selections. In the case of extremely infrequent ones only advances
in IR technigues could lead to improved results.

References

[1] S. Lawrence and L. Giles. “Searching the World Wide Web”. Science Magazine
Volume 280, pp. 98-100.

[2] P. Resnik and H. Varian, guest editors. “Recommender Systems’ . Communications of
the ACM, March 1997.

[3] M. B. Jansen, A. Spink, J. Bateman, and T. Saracevic. “Rea life information
retrieval: astudy of user queries on the web”. SGIR Forum, 32(1), Spring 1998.

[4] JJ. Rocchio. “Relevance Feedback in Information Retrieval”. In Gerad Salton,
editor, “The SMART Retrieval System —Experiments in Automatic Document
Processing”, chapter 14. Prentice Hall, 1971.

[5] G. Salton and C. Buckey. “Improving retrieval performance by relevance feedback”.
Journal of the American Society for Information Science, 41(4):288-297, 1990.

[6] H. Lieberman, N. Van Dyke, and A. Vivacqua. Lets Browse: A Collaborative
Browsing Agent . International Conference on Intelligent User Interfaces, January 1999.

[7] Pluribus. http://keilor.cs.umass.edu/pluribus . Pluribus can be downloaded from
http://keilor.cs.umass.edu/pluribus/distr/ .

[8] DirectHit. http://www.directhit.com .

21

